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A PRODUCTION NETWORK MODEL AND ITS DIFFUSION APPROXIMATION

by
Michael Louis Wenocur

Abstract

This report develops and analyzes a general stochastic

model of a production system. The model is closely related to

Harrison's [5] assembly-like queueing network, the principal differ-

-

5 .ence being that here we assume all storage buffers have finite

:‘ capscity. Our attention is focused on a vector stochastic process 2
i whose components are the contents of the various storage buffers (as

functions of time). The principal result is a weak convergence

&
P

theorem of the type developed by Iglehart and Whitt (7] for queues in
heavy traffic. This limit theorem shows that, with large buffers and

e
s
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balanced loading of the system's work stations (see below), a properly

normalized version of the storage process Z can be well approximated
by a certain vector diffusion process 2Z*, We comstruct 2Z* by
applying a particular (and rather complicated) reflection mapping to
multidimensional Broyn:un motion. Various properties of the limiting

diffusion 2Z* are developed, but these provide only a modest begin-

a4

ning for the analytical theory that must be developed before our limit

i, %ol

theorem can lead to practically useful approximation procedures.
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CHAPTER 1
INTRODUCTION AND SUMMARY

This report develops and analyzes a general stochastic
model of a production system. The model is closely related té
Harrison's [5] assembly-like queueing network, the principal differ-
ence being that here we assume all storage buffers have finite
capacity. Our attention is focused on a vector stochastic process 2
vhose components are the contents of the various storage buffers (as
functions of time). The principal result is a weak convergence
theorem of the type developed by Iglehart and Whitt [7] for queues in
heavy traffic. This limit theorem shows that, with large buffers and
balanced loading of the system's work stations (see below), a properly
normalized version of the storage process Z can be well approximated
by a certain vector diffusion process 2Z*. We construct 2* by
applying a particular (and rather complicated) reflection mapping to
sultidimensional Brownian motion. Various propertfes of the limiting
diffusiop Z* are developed, ;;t these provide only a modest begin-
ning for the analytical theory that must be developed before our limit
thaor;n can lead to practicaily useful approximation procedures.

1.1 The Systems Being Modelled

A simple example of the systems under study is the assembly

operation pictured in Pigure 1. Inpuf items of types 1 and 2 are

gensrated by external sources and deposited into similarly numbered

storage buffers. We call these external ‘scurces work stations 1 and

« and/or
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N 2. Assemblers at work station 3 then combine the input items into

li finished goods (type 3 items). Let us assums that exactly one item
each of types 1 and 2 is required to mske an item of type 3, and type
[- 3 items dop_art the system immediately upon completion. Work at

i station ! or 2 must stop if the corresponding storage buffer is full,
“ and work at station 3 must stop if either of the two storage buffers
is empty. In the former case, potential production from the input

: station is lost because of what we will call blockage. In the latter
E case, potential production from the assembly station is lost because
of starvation.

.-; In the description sbove, we have talked in terms of discrete

r items, but Figure 1 could also represent a blending opontion in which
- granulated or liquid ingredients are combined in fixed proportions to

would speak of external sources delivering material of types 1 and 2

# - produce a similarly continuous output product. In that case, one
;

, which is blended to produce output material of type 3, and the storage
; buffers might be called surge tanks in the case of liquid flows. Even
when speaking of countinuous flow mtug » We will nonetheless employ
the language of work stations and storage buffers.

A more complex sort of system is the production network pictured
in Figure 2. Here wa have external work stations supplying material
o of types 1, ..., 5, plus a succession of internal work stations that
v'; \? transform these inputs by stages into an output material of type 10.
L Work stations 6, 8 and 10 have multiple inputs, so they involve some

sort of assembly or blending. Internal stations with a single input

night represent such transformations as the stamping of blanks from




Figure 1. An Assembly or Blending Operation. Circles
Represent Work Stations and Squares Represent

Storage Buffers.
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;;“; sheet metal, or the cooling of hot liquid input in a heat exchanger.
i Note that each work station in Figure 2, except the last, deposits

: its output material into a buffer of finite capacity. The work

station, output material and storage buffer are all designated by the

same number. Attention will be restricted here to production networks
in which all assembly or blending operations use inputs in fixed pro-
portions, each work station produces a single type of material as
output, and each type of material (except the finished product) is
used as input at a single downstream station.

Typically, the amount of output that a work station can produce
in any given period is stochastically variable, due to worker absente~
eism, mechanical failures, quality variations in raw materials, and so
forth. It is this stochastic variability that leads to non-zero
.inventory levels in the storage buffers and to lost potential output
due to blockage and starvation. Our objective in modeling is to
understand how system performance characteristics, like average
inventory levels and average throughput rates, depend on distribu—~

tional properties of the work rates at various stations.

1.2 Stochastic Models Employed

Our ultimate purpose is to propose a class of diffusion processes
as models of production networks. It is not easy to see that these
processes are appropriate for that task, or to see the conditions
under which they are appropriate. Thus, as an aid to intuition, it
will be showm ;lut the diffusion model represents the limit of more
readily comprehensible models of conventional type. With regard to
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the precise characteristics of the so—called conventional model, we
have quite a bit of latitude. The particular conventional model to be
discussed here was chosen with some very specific criteria in mind.
We will now describe it, restricting attention to the simple assembly
operation of Figure 1 for simplicity, and will afterward discuss its
weaknesses and virtues.

To model the assembly or blending operation of Figure 1, we take
as primitive three increasing processes & - (;k(t), t > 0) satisfy-
ing £4(0) = 0 (k = 1,2,3). Call g, the potential output

process for work station k, interpreting Ek(t) - Ek(l) as the total
output (total amount of material k) that station k can produce over
the time interval [s,t] if it is able to work without interruption
during that period. If blockage (in the case of 1nput‘ stations 1 and
2) or starvation (in the case of blending station 3) occurs, then the
actual output will be less (see below). Define xk(t) = ﬁ(t)-;s(t)
for k= 1,2 and t > 0. Denoting by bk the capacity of buffer k
< b < ®), we sssume as given initial contents zk(O) such that
0< lk(O) b (k=1,2). Aprinciple modeling task is to explain

how the contents process Z(t) = (zl(t), zz(t)) is defined in terms
of the primitive model elements for t > 0. If there is no blockage

or starvation up to time t, then we have simply

(1) zk(t) - zk(O) + gk(:) - :3(t) - zk(O) + xk(c)

for £ > 0. Thus X(t) = (X,(t), X,(t)) 1s called the net potential




input process underlying our system model. How can (1) be modified to

account for potential blockage of the input stations and/or starvation

of the blending station? Let Y (t) denote the lost potential
output from station k (due to blockage or starvation) up to time ¢t,
so that actual output from station k over the interval [0,t] 1is

Zx(t) - R(t). Then the correct modification of (1) is

N (2) 2,(t) = 2,(0) + (£, () - Y, (£)) = (£5(t) ~ ¥ (t))

- zk(O) + xk(t) - !k(t) + Ya(t) .

for k=1,2 and t > 0. But now we obviously have the problem of
defining Y(t) = (!l(t), !z(t), !3(t)) precisely in terms of primitive
model elements.

Before going further, we introduce the critical final assumption

that Zx is a continuous process for each k = 1,2,3. 1If Figure 1

is interpreted as a blending :'puration, then this assumption is non-

F controversial, but if it rep 2sents an assembly operation for manufac-
y tured items, the continuity uc@tim constitutes a potentially gross
é approximation of reality. In the latter case, our defense is that we
;; only seek to analyze well balanced high volume systems (see Chapter 6)

with relatively large buffers. One may then reasonably approximate

Sy Ty ye 1w

the cumulative output from a work station by a continuous function of

:‘ time, and the content of a buffer may be viewed as an approximately
continuous varisble. Be that as it may, with ¥, assumed coutinu-
5 ous, it 1is reasonable to require that

"
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) Yy is continuous and increasing with Yy(0) = 0

for each k = 1,2,3. Then Z will be & continuous process as well by
virtue of (2). Finally, the intended meanings of Y and Z suggest
the key relations

(4) 0<z(t) < b for k=1,2 and t >0,
t

(5) [ (b -z (s)) dY, (s) = 0 for k=1,2 and t >0,
0
t

(6) [ (2,(8) AZ,(8)) dY,(s) =0 for t20.
0

The meaning of (4) is clear, and (5) says that potential output from
station k = 1,2 1is lost (!k increases) only when Z, - bk' Equiva-
lently, potential output from station k = 1,2 is foregone or
sacrificed in the minimum smounts necessary to maintain zk(:) £y,
for t > 0. In precisely parallel fashion, (6) says that potential
output from the blending operation is lost only when one or both of
the storage buffers is empty, and together with (4) this means that
potential blending output is sacrificed in the minimum amounts
necessary to insure that Z,(t) >0 for all t >0 and k = 1,2,
We have thus far dodged the question of how one defines Y
precisely in terms of ¢ and 2(0), while simply listing (3)-(6) as
necessary properties. It turns out, however, that these properties

uniquely determine Y. The following is a special case of a

representation theorem for general networks (like that pictured in
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Figure 2) to be proved in Chapter 4. Let S (for state space) denote

the rectangle [0,b;] x [0,b3].

(7) Theorem. For each continuous X and Z(0) ¢ S, there exists a

unique Y satisfying (3)-(6), where Z 18 defined in terms of Y by

(2).

There remains the essential task of specifying the stochastic
character of our potential output process . A number of different
assumptions will ultimately be considered, but let us focus on the
following for the sake of concreteness. Assume that there is given an

IID sequence of positive random three-vectors

= {(Cl(n)’ CZ(n)) Cs(n)); n= 1,2,3...} .

We now define £ 1in terms of { by means of

(8) &y (n) =g (1) +8,(2) + eoo +(n) , for n>1 and k=1,2,3

and by linearization

) £,(6) = ([t+1]-t) g, ([e]) + (e=[e]) g (IeH]) ,

where [x] represents the greatest integer less than or equal to x,
and k = 1,2,3. Interpret ({y(n) as the total potential output for

station k during the nth shift. Equation (9) may be interpreted as

..............

.....




saying that gy increases at a fixed rate during each ehift and

that this rate varies from shift to shift. In other words, the total
potential output of a shift is random but it is spread uniformly over
the shift.

We now present some obvious and reasonable objections to our

conventional model, with a brief rejoinder to each.

(a) It treats cumulative potential output as a continuous function of
time; this is fine for continuous flow systems but not as good
for discrete item manufacturing systems. Our defense in the
latter case is that we will eventually restrict attention to high
volume systems where individual items are more or less
insignificant.

(b) The Model's representation of individual work stations through a
single potential outflow process is certainly crude. In the case
of stations populated by workers, for example, no formal distinc-
tion is made between single-server and multi-server stations as
is common in queueing theory. These differences must somehow be
expressed entirely through the distributional propsrties of
Zxe Again our defense is that these fine-scale features of
work center operations will be more or less insignificant for the
high-volume systems of interest.

(c) With the specific distributional assumption that we have employed

above, the distribution of the total potential work during shift

ntl 1is independent of all that has transpired during shifts

1,2, «se, n. If the source of stochastic variability is

10
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mechanical failure, for example, this means that the probability
of a failure on day ntl 1s unaffected by the amount of work or
idleness that a machine may have experienced. This may be very
unrealistic, but we will be looking at conditions under which the
amount of idleness at any given station is vanishingly small, and
again we argue that the structural crudeness of our model is
relatively unimportant.

(d) Despite its simple appearance, our conventional model is
relatively intractable, regardless of what distributional
assumptions one makes about {. If specialized to the case of
two stations, for example, it is considerably more difficult to
analyze than analogous queueing models, like the M/G/1 queue
with finite waiting room.

This last point does not bother us, because we do not want to

analyze the conventional model. PFor us it is just a stepping stone to
5 the diffusion limit. We could take limits of more finely structured,
L! high fidelity wodels, but the same diffusion limit would eventually be
obtained. The virtue of what we are calling our conventional model is
that it makes for the simplest possible proof of the limit theorem

that is our main product.

- 1.3 Results Obtained

In Chapter 6 we will consider a sequence of production networks
indexed by n =1, 2, .... Here and in Chapter 6, wa append a
superscript n to our previous notation to indicate a quantity or

process associated with the nth system. It is assumed that all buffer

11
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X%(ne) => X* a3 n + -,
th

sizes increase with n, and that n
where x(")(n-) is the net potential input process for our n
system, X* 1is a vector Brownian motion (with some drift vector and
covariance matrix), and ==)> denotes weak convergence in an appro-

priate function space. As our main result, it will be shown that

™, ¥y =y (z¢, ™) 8 0+ e,

where z(") and Y(n) are normalized versions (see equations (6.4)

and (6.5)) of the contents process and lost potential output process
of our nth system, Z* 1is a certain vector diffusion (reflected
Brownian motion), and Y* 1is a continuous increasing vector process
assoclated with 2%,

In order to say more about the diffusion limit 2Z*, let us again
consider the simple assembly or blending operation pictured in Pigure
l. The state space for the corresponding diffusion limit 2Z* is a
rectangle S pictured in Figure 3. In the interior of §, Z*
behaves like the Brownian motion X*. At the boundary, Z* reflects
instantaneously, the direction of reflection being constant along each
boundary surface as pictured in Figure 3. The meaning of this
boundary behavior will be explained, and the processes 2Z* and Y*
will be precisely defined, in Chapter 4.

As & final task, we will begin development in Chapter 5 of the
analytical theory associated with our diffusion limit 2Z*. To explain
the character of this theory, let us restrict discussion here to the
case pictured in Figure 3, denoting by c = (cg) and A = (ayy)
the drift vector and covariance matrix respectively of the underlying

12
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Figure 3. State Space 8 and Directions of Reflectiom for
the Diffusion Limit Z* Correspouding to the
Assembly System Pictured in Figure 1.
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Brownian motion X®*. Algo for simplicity, we restrict current

discussion to the existence and computation of the steady-state
distribution for Z*, although some other anslytical probl.i. are
discussed in Chapter 5. Let us define the (constant coefficient)

differential operators

14 8° . d
(10) L § J A + 7 e, == .

’ 1=] §=1 2 OXyXy  4q 10x

g - D 2D

and

1 5 ..

E (12) D3 - -BT + -3—8- o

Note that L is the elliptic operator associated with the underlying
Brownian motion X%, while Dy is a directional derivative in the

et o8 ¥ £an g e

direction of reflection associated with boundary surface Sy 1in
Figure 3. 1In Chapter 5 it will be shown that Z* has a unique

i S}

stationary distribution II, and that 11 satisfies the stationary

ey
<.

« equation

.

'i 3

. (13) 0= [ LEx) W(dx) + § [ D £(x) w(dx)

o 8 k=] Sk .

R

3

a) for all f£ ¢ cz(_S). whare vl’. Vgs vy are certain boundary measures
E concentrating all their mass on 8;, 87, 83, respectively.

¥

¥ It 1is essentially here the story ends. We conjecture that (13)
M uniquely determines both I and the boundary msasures w. No

+d

14
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proof will be offered, nor do we suggest any practical scheme for

computing moments of II or other interesting quantities from (13).
Nonetheless, work is currently under way on these problems, and there
is reason to believe that they will be resolved in the not-too-distant

future.
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In this chapter we present some conventions and results used
throughout this work. In section three of this chapter we prove a

probability result of independent interest.

2.1. Conventions and Notatiouns

Within each chapter, we will refer to a numbered display by its
number. When referring to a numbered display in another chapter, we
will prefix the chapter mmber to the display mmber. For example,
Theorem 4.1 refers to the first display of Chapter 4.

Due to typographical considerations we will not use special
notation for vectors or vector functions. For example, 0 may msan
either the real mmber 0 or the vector (0,0, ..., 0) depending on
the context.

The symbol R will denote the resl mumbers. For exsmple, R¥
is the space of N-dimensional real vectors. | The interval [0,=)
will be demoted by R, and R will refer to the HN-fold product of

) R
If ack' then fas !-n{lall, cens 'a"}. This notation
will hold unless otherwise specified. Let £ = (fl' fz. ceey fn)

where fi: (0,T] + R. Define

(1) 1f1 = sup 1£(e)r
0<t&T

where the value of T ¢ K* will be clear from the comtext.

16
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If X 4s an arbitrary space and f: X + R, then (f1 4s defined

(2) 1f1 3 Sup ‘f(:)' .

xeX

If X has a topology, we define C(X) as
(3) C(X) = {£: X+ R such that £ is coantinuous)
If a,becRY then a)> b 1s defined by
(4) a2>b 1if and only if ‘nzbn for n=1, 2, oo, N .

We define a>Db tomean a2>2Db and a#2b. If £, mep X to
¥ then £ g means that f£(x) > g(x) for every xcX. £ g
means that £ >g and £ g.

The symbols A and v are used to represent the infimwm and
supremum operstions respectively.

Let C' be the space of contiouous functions f£: Ry + Y.
The pair (Q,F) will always denote s messurable space and w a
generic element of Q. Suppose X: Q + CW,

(5) Convention. X(w)(t) will be denoted primarily by X(t) and
. occasionally by X(t,w).

let %: Q + [0,0s] and define X(t) to msan

17
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“ X(<x(w), w) for tw(w) < =
-' (6) X(¢) = 0 .

for 1 = ®

This last convention is implicitly used in Chapters 2 and S.

2.2. Some Propositions in Real Anslysis

3

2 In Propositions 7 and 11, £ and g will demote continuous

E " functions from Ry to R.

:?; (7) Proposition. If f and g are increasing and together satisfy
L‘ ' (8) £>g ou [s,t] ,

s

:j' and

9 £(s) = g(o) and £(t) - g(e) >0.

Then there exists u ¢ [s,t] such that £ 41s increasing at u and
£(u) > g(u).

:: Proof. If t 1s a point of incresse for f then u = t gsatisfies

our hypothesis. Otherwise define u as

g

-

(10) .o % Sup{w ¢ [s,t); £ 1s increasing at w) .

N Line (10) implies that f£(u) = £(t). Furthermore, since the points of

B

X increase form a closed set, it follows that f s increasing at u.
Finally, observe that f(u)-g(u) = £(t)-g(u) > £(t)-g(t) > 0. Q.E.D.

¥

L:

X
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(11) Proposition. If g is continuous and f is defined by £(t)

2 Supy ¢ . ¢ tg(l:). then

(12) f 1is a continuous functionm,

(13) f(t) = Sup g(s), where Q, = {r ¢ [0,t]: * 1is rational),
s ¢ Qt

and

(14) If £ 41s increasing at t then £(t) = g(t) .

Proof. Parts (12) and (13) follow easily from the continmuity of g,
and therefore only (14) will be proved. Suppose that £ 1is
increasing at t; then every ¢ > 0 satisfies f(t+e) > f(t-e). It

therefore follows that

(15) f(the) = Sup g(s) .

s ¢ [t-e,tte)
Line (15) and the continuity of £ and g together imply that
£(t) = g(t). Q.E.D.

Let (Q,7) be a measurable space and let (Fp, t > 0} be a
filtration of F. Suppose that X, Y: Q + C and that X(t),

Y(t) ¢ 7. Defive W(t) = Supy . ., ¢ o(X(s) - (s))*t.

19
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(16) Proposition. The process W(t) 1is adapted to {F¢, t > 0},

10.0, "(t) € !t for ¢t 2 0.

Proof. Elementary measure theory implies that for s < t

an (x(s) - XsN* e 7, -

Purthermore, the space of F,-measurable functions is closed under
the operation of countable supremum; hence lines (13) and (17) imply
1

th.t W(t) € !to Q.E.D.

Let (U, F) be a measurable space. Suppose that %, x ¢ X}
is a set of probability measures on (U,F), where X is a mstric

space with metric d. let FX(f) s [y £w) aF*(u).

(18) -Proposition. Suppose there exists y ¢ X such that

(19) 11  eup r"(o)-r’(o)|-o.
' x+yQe?
Then
(20) lia eup 'r‘(f) -r’(z)| -0,
xeyfcA

where A3 {f ¢¥ such that |[£]| < 1).

20
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Proof. Let 8y» g’ be the Radon-Nikodym derivatives of P~, P’
‘ relative to the measure P* + P’. Then every f ¢ A satisfies
:

(21) PA(E) - PI(E) = [ £(u)(g,(w) - g () (P427)(dv) .

U.

Line (21) implies that
.
g (22) [P5) - PO | <[ |8 ) - g ()| (BT4pY)(dw)
N u
- <2 swp Q@ -PW@| .
. Qe
Lines (19) and (22) together imply (20). Q.E.D.
Let X(t) be driftless Brownian motion on the real line.
(23) Convention. Let P* be the distribution on the path space of X
| corresponding to initial state X(0) = x.
Let > 0 be given and define <t by

(24) < 2 inf{s: 'x<.)| -r).
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(25) Proposition. Let x ¢ (-r,r) be given. Then there exists a

density £;(s,z) such that

t
(26) P <t, <) =m2) = £ (s,2) ds for t >0
0

and lzl = r, and

(27) fx(o,z) is a continuous function of x on the interval (-r,r).
Proof. Consider the following rescaling of X:

(28) *(t) = X(4r?t)/(2r) for £ >0 .

Dcfin.. the stopping time T as follows:

(29) Tz inf(s: [Eé(e)| =3} .

Lines (24), (28) and (29) together imply the identity

(30) (T, X*(T)) = (+/C4r?), X(¥)/(2r)) .

let gy(s,z) denote the density of (T, X*(T)) corresponding to
the initial state X*(0) = y. Line (30) implies the following

equation

G £.(0,0) = g, (o/Chr?), 3/C2r))/CheD) .

22
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It now suffices to show that (T, X*(T)) has a density gy(s,z)
which is continuous in x ¢ (~1/2, 1/2). Observe that X* is
driftless Brownian motion with X*(0) = X(0)/(2r). Thus the symmetry

of driftless Brownian motion implies the equation

(32) g (s, P = g_(s, - D for x (-3, D .

Therefore we need only show that gy(s, -1/2) exists and is
continuous in =x. On page 267 of Ito and McKean [8] it is shown that

8x(8, -1/2) exists and has the following expansion

(33) g (s,- —;') - nzl nx exp(-n2 = 8/2) sin(nn(x +%)) .

The Weierstrass M-test shows that g,(s, -1/2) 1is a continuous

function of x. Q.E.D.

Let r>0 and K> 1 be given. Define B, as follows

(34) B_= {x ¢ Rk; Ixt = r} .

Define Ry 4 a subset of By by

(35) nk,j z (x ¢ B x, = jr}, vhere k=1, ..., K, and j = -1,1 .

We now define a measure A on B, by
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(36)  A(A) = LX), Ty, oo, X) dx
12_1 kzlx{kj ALY 72 ® =

oo d.xk_l dxk"-l see de .

In other words, A 1is the measure which gives (K~1)-dimensional
Lebesgue measure to each face Ry j of B;.
Let W(t) be standard K-dimensional Brownian motion. Define

the optional time <« by

(37) t = inf{s: W(s8) ¢ Br} .

(38) Proposition. Let ixl < r be given. Then there exists a
density hy(s,z) such that

(39) P((z,#(x)) € Q) = [ b (s,2) dA(z) x ds ,
Q

where Q is a measurable subset of ([0,») x B, and

(40) lim h_(s,z) » h (s,z) for all 8 >0 and 2z ¢B_.
x+»0 X hole»2 - T

Proof. Observe that if we define ) J by
?

(41) 1k,j = inf(s: Hk(n) = jr) for k= 1,2,.¢.,k and j = -1,1,

and

) 1

42) E A for k=1, 2, ..., K,
% P *x,3
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then

1 K K
(43) T = A A < = A <
jo=1 kel K3 ey E

Since the <ty 4 are independent continuous random variables, it

follows that
x 1 K x
(44) P°((x, Wx)) ¢ Q = ¥ Y PP(lx, W1)) € Q) n (= T jl)
J=-1 k=l ’
1 K x
- ¥ Y PT((, W) € Q. j) ,
J=1 k=l '

where Qk,j 2Qn [0,=) xnk,j .

It thus suffices to show that we can define a density h.(s,z)

which satisfies (40) and

(45) P (%, W) € Q P [ b (s,2) dM(z) xds .
T %y

Due to complete symmetry we can restrict our attention to R; ;. We

need the following result from Feller [4]. Define Qy(u,z) as

(46) Q (u,2) = 2072 7 fexp(- ("“+‘“') )
o=
- exp(- (=+u+(4n+2)r) )N .
Then
(47) PE(W (t) ¢ A, 7, > ) = [ o (x v dv

25
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vhere A is a measurable subset of (-r,r) . Lines (43) and (47)

together imply that

(48)  P¥((x, W) € Q) )

-‘{ fxl(l,zl) Q.(xz,zz) oo Q'(xx,zx) A(dg) x ds .
1,1

Observe that hy(s,z) can be defined by

K K
(49) h (s,2) = )) -I-Il Q.(xj. '_1) .

L I{r}( Izk') f‘k(.,zk?

3
J#

The density hy(s,z) then satisfies (45). Since Q.(x,z2) and

fx(s,z) are continuous at x = 0, so must be hy(u,s). Q.E.D.
Let X(t) = W(t) + ct and define <+t = inf{s: 1X(s)l = r}.

(50) Proposition. Let Ix! { r be given. Then there exists a

density b#(s,z) such that

(s1) PX((v, X(3)) € Q) = [ h¥(s,2) dA(z) xds ,
Q
and
(52) lim h;(l,l) > ha(l,:) for 820 and z ¢ Br o
zx+0

Proof. Observe that <t is a finite stopping time for all x such
that Ixl < r. Consequently the Wald likelihood ratio argument

implies

26
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(53) P*((x, x(t)) €Q = [ exp{- (% c'cs - c'g)) h‘(o,:) dx(z) xds .
Q

Therefore

h;(-,z) = exp{- (% c'es - ¢'z)) hx("') .
Condition (52) is now obvious from the last equation. Q.E.D.

2.3 An Ergodic Theorem for Feller Processes

Let (Q,F) be a measurable space and let {F.; t > 0} be a
right continuous filtration of F. Suppose that S 1is a compact
metric space and that X = {X(t), t > 0} 4s a stochastic process from
Q to S which is adapted to (Fy, t > 0}/Borel (S). PFurthermore,
suppose that the family {PX, x ¢ S} makes X 1into a Markov

process, i.e., every A ¢ Borel (S) satisfies

(56)  P(X(t+e) € AE,) = Pt (x(s) ¢ a) a.s. P~ .

The following definition was derived from properties of Brownian

motion.

(55) Definition. A state x ¢ S 1is diffusion-like for X 1if there

exists s neighborhood base B of closed sets such that every B ¢ 3B
satisfies conditions (56) and (57):

(56) Pl(x Cw) =1 for y ¢ B,

vhere < = inf{s; X(s) ¢ dB).
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(57) 1im  sup [P7((x, X(%)) € A) - P*((%, X(<)) cA)| =0,
Yy+x AcA

where A 1is the Borel subsets of the product topology on Ry x 3B
induced by the usual topology on R; and the relativization of the

topology on 8 to 3B.

(.58) Remark. Suppose that the following conditions are met:

3 PY((x, X1)) eA) = Py(t,8) A(dt x dz)  for y near x,
N A

and

F' 1lim P’(t") - Px(t,l) 8.8, A\ .

= ’ > X

Then Scheffé's Lemma (see Scheffé [13]) implies that (57) will be

satisfied.

(59) Theorem. Let X be as described above. In addition, suppose
that X 1s a Peller process such (for a definition of Feller process
see Breiman [2]) such that

(60) For every non—empty open set A there exists t > 0 such
that PX(X(t) ¢ A) > 0 for every x ¢ S,

(61) 1lim EY(£(X(s))) = EX(£(X(t))) whenever f ¢ C(S) ,
y+x
s+t

and

(62) The diffusion-like points of X are dense in 8.

Then X i1is an ergodic process.

................
......
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The rest of this section is devoted to proving Theorea 59.
(63) Proposition. Let X be a Peller process on S such that

(64) Por every measurable set A with non-empty interior AC
there exists u > 0 such that P*(X(u) ¢ A) > 0 for every

X € S.

Then for every such A there exists a < 1 such that

(65) PX(¢>t)<a® for t>2u and xe§,

where < = Iinf{s: X(s) ¢ A}.

Proof. Let u satisfy (64) for Ao, and let £(x) = PX(X(u) ¢ Ao).

Since X 1s a PFeller process and A0 open it follows that

(66) Lm £(y) = Um P(X(u) ¢ AD) > PX(X(u) € A0) = £(x) .
y+x y+x

Therefore f 1is lower semi-continuous on S. Since S 1is compact, f

achieves its minimum at X, € S. Thus inf“s £f(x) = f(xo) £ 1l-p > 0.

Let t > 2u be given. Set n = [t/(2u)]/2. Using an obvious

induction observe that

29
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(67) PX(x > t) < PX(X(u) € AS, ..., X(20u) € A®)
! - 1 c(x(.;)w’“""(x(u) € A%, .ooy X((20-1)u) € AD)]
3 A

< l‘[l c(x(u)) pZn-I] < pzn < at ,
A

where o = pl/(z“)o Q.E.D.

(68) Proposition. Let X be a Feller process on S which satisfies
(61) and let D be a closed subset of S. Suppose x 1is a
diffusion-like point and that x.¢ DS. Then the function P (y,D)

z PY(X(t) ¢ D) 1is continuous at =x uniforanly in ¢, i.e., for ¢ > 0

there exists a closed neighborhood F of x such that

(69) sup sup P (x,,D) -P (x,,D)] <.
t20 x,x ¢F £l t2 -

Proof. Since x is diffusion-like, x has a closed neighborhood B
disjoint from D that satisfies (56) and (57). Define < = inf{s:
X(s) ¢ 3B}. Since X has continuous paths and 3B is closed, it
follows that <+t 1is a stopping time. Furthermore, pathwise countinuity
implies

(70) P (y,D) = PY(X(t) ¢ D, ¢ < t) for y ¢B .

Apply the strong Markov property to (70) to obtain

(71) P(y,D) = P(P,_ (X(5), D)) .

30
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Condition (61) and the fact that D 1is closed together imply that

Pe(y,D) 1s upper semi-continmuous in (t,y) and thus measurable.

Furthermore Sup, y IPt(y,D)I £ 1 . Therefore Proposition (18) can be
]

applied to (71) to obtain (69).

(72) Proposition. Let X satisfy the conditions of Theorem (59).

Then every closed subset D satisfies

(73) lim sup P':(x1 D) - Pt(xz,n) =0 .
t+ o X)47,€ ]

Proof., For D = S the proposition is trivial, so suppose D¢ 1s a
non—empty subset of S. Condition (62) implies that there exists

x ¢ D¢ which is diffusion-like. let ¢ > 0 be given. Proposition
(68) implies that there exists P, a closed neighborhood of x, .vhich
satisfies (69). Let X oX, € S, and let xl.xz be independent ver-

sions of X such that X'(0) -z and x2(0) = x,. Define T as

follows:

(74) T = tnf(s: (X'(s), X(s)) € F x F} .

Observe that

(75) P (x;,D) = P} (t) ¢ D, T> ) + px}(®) €D, TC D)
and

(76) P (x,,D) = B(X*(t) ¢ D, T> t) + B(x*(t) €D, T V) .
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It is easy to verify that the coupled process (x!,x2) satisties
the conditions of Proposition 63, and therefore there exists an o < 1

such that

77) sup KT > ¢t) o , for t 2 2u.
xl,xz € S

Lines (75), (76), and (77) together imply

: (78) [P (x; D) - By(xy,D)
L, £ 'P(!l(t) €D, TS t) - p(x3(t) D, T<e)| +at.

Since T 1is a Markov time it follows that

(7190  Bx(t) €D, T.Ct) = I S 2(x'(e) ¢ D|rp)]

(vhere P 2 o((x'(s),X%(s)), 0< 8 < T)

|
= BlIp ¢ gy Peg®@ (D, D] .

; It similarly follows that

,1'

» (80) P(x3(t) €D, T £t) = 1:[1{.1.S t) rt_,r(xz('r), D)] .
'1 Line (69) now implies that

“
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(81) ) e b, T< ) - Kx'(e) €p, T O]
< By [Peg® @, D - 2 _x'em, D)

S![I ]Se °

{Ke) ©

Therefore it follows from (78) and (81) that

(82) sup [P (x,,0) - B (x,D)| <+ a” .

X)X, € 8
Since ¢ 1is arbitrary, equation (73) follows easily from (82).

(83) Proposition. Let Py(x,*) be s Markov kernel on a compact

RECEHE P D gt i)

metric space 8. Suppose P.(x,°) satisfies (73). Then there

o 1kt

exist {ty, n > 1} such that t, ¢+ @ and a probability measure

I on S8 which together satisfy

(84) lia sup |P, (x,2) ~N(£)| =0 for £ ¢ C(S) .
n+e x¢8 n i
. |
3
;. Proof. Fix y ¢ 8. Since S 1is compact, the family of measures
.
4 {Pe(y,°), t > 0} 4s tight. Therefore, there exist {t,, n > 1}
of
3 and a probability mesasure I which together satisfy
;
-,
L, (83) P, (y,°) => 0(°) a8 n+e,
n
¥ and
- (86) t te a8 nse.,
&
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Let £ ¢ C(S) such that 0 < f < 1. Line (85) implies that

2 (87) Pt (y,£) » (L) a8 n+e,

- n

i Let m be an arbitrary integer. Set Dy = {x; k-1 < =f(x) < k},
and

|
(88) £, I k/ml

k=1 D

Lines (73), (855 and (86) together imply that there exists ng such

that
= 2
(89) sup v [P (x,D)~-P (y,D)]| <1l/m for n > .
chk-lltn % ta nkl- =%
{ and
(90) 'Pt (y,£) - H(f)l £1ln for n > n, .
a

Therefore, the triangle inequality implies

»1 91 B, (x,8) = IO | < [P, (x,f = £ + [P, (x,£)) = P, (7.2

. n n n n

+ 'Ptn(y.f- -0+ 'P‘n(”” ~ 1) |

E‘ Lln+ wult1l/m+l/ma=é/a  for n 2 n,.

The arbitrariness of = implies (84) for f ¢ C(8) such that

0<f<1l. The general case now follows easily from the compactness

v_
-

of 8.
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(92) Proposition. Let X be a Markov process on a compact metric
space S. Suppose X satisfies (60), (61), and (84). Then X 1is an

ergodic process.

Proof. We need to show that

(93) lim Pt(x,f) = [I(£) for x ¢S and f ¢ C(S) ,
tre

and

(94) neE) >o for f ec¢C(S) and £>0 .

Let f € C(S) and let ¢ > 0 be given. Condition (84) implies that

there exists s such that

(95) sup lP.(x,f) -mMe)| e .
xe$S

Let t > s be given. Then every y ¢ S satisfies

(96) P, (y,f) - n(f)[_s P, (v, dx) 'P'(x,f) - If)

S Pt_'(Yo dx)e = ¢ .

NY— U*—,

Therefore equation (93) must hold.
Finally, suppose f ¢ C(S) and f > 0. Observe that condition

(61) implies that Pg(+,f) ¢ C(S8). Therefore (93) implies

(97) x(f) = lim P _, . (x,f)

s v @ sit

= lim | P (x,dy) P (y,f) = | n(ay) P.(y.0) .
s e 8 S

Lines (60) and (97) together imply (94). Q.RE.D.

35




A

Theorem 59 can thus be proved by applying in sequence Propositons
72, 83 and 92.

2.4 Weak Convergence in Function Space

Let (Q,B,P) be a probability space. Let (M,d) be a metric

space and let F be the Borel sets of M.

(98) Definition. Let X be a mapping from Q to M such that

x'l(g_) c B. Then we say that X 18 an M-valued random variable on

Q.

(99) Remark. We demote the above relationship by either X ¢ B/F or
X ¢ B. We use the latter notation only if F is clear from the

context.

(100) Definition. Let {X;, n > 1} be a sequence of M-valued
random variables defined on Q. Suppose that every closed subset D

of M satisfies

(101) Tim KX eD) <KX eD) ,
n+>e

for some M-valued random varisble X_. We then say that (X o 02 1}

converges weakly to X.,. We denote this by

(102) X, =>X as nse

36




Consider the particular case where M = CN, 4 is the metric
given in Whitt [14], and F is the o-field of Borel sets on CN.

For T > 0 define Tol CN+ CNIO,T] as follows
(103) r.r(x)(s) = x(8) for xeC' and s € fo,T] .

(104) Lesma. Let {X,, n> 1} be CN-valued random variables.
Then (X,;, n > 1} converges weakly to X, if and only 1if for

every T > 0O the sequence {rr(X,;), n > 1} converges weakly to

r(X,).

For a proof of Lemma 104, see Whitt [14].

37




.

."!YYT. ’

.r—-vr,.

MM ( §

---------

In this chapter we define precisely our general production
network models, examples of which were discussed in Chapter 1. In the
first section we describe the deterministic features of such systems.
In Sections 2 and 3 we propose two different ways of modelling the

stochastic structure of a production network.

3.1 The General Model

We begin our description of the general production system by
specifying its network structure. The network consists of K+l
stations indexed by the set k=1, 2, ..., K+l. Stations 1, 2, ...,L
(L < K) are called external stations. We specify the system's flow
structure by a map o: {1, 2, ¢ee, K} » {L#1, ..., K+l}. Interpret
o(k) as the successor atation at which output from station k is used

as input. Thus
(1) Mk) 2 (3 e {1, voe, K}; o(J) = k)

is the set of predecessors whose output is used directly as input at

station k (k = I+l, ..., K+l).

It is assumed that o(k) > k, and o maps {1, 2, ..., K} onto
{L+l, «ee, K+1}. These two conditions guarantee that our network will
be an arborescent structure whose terminal station is K+l. Thus
inputs from the external stations (1, 2, ..., L} are combined by

stages into inputs for the terminal station K+l.
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It is assumed that for each station k (k < K1) there exists a
finite output buffer of size by. Furthermore, we associate a
potential output piocess Zx = ({x(t), t > 0) with each station
k. The process fy 1is assumed to be continuoue and increasing with
Zx(0) = 0. Interpret Zy(t) as the total production of station
k through time ¢t, providing that station k works without
impediment during the time interval [0,t]. We now define the net

potential input process

(2) Xk(t) = Ek(t) - Eo(k)(t) for t >0 ad k=1, 2, ..., Ke

Interpret Xp(t) as the potential change in the kth buffer's
inventory from time 0 to time t. Thus, if we let 2,(t) denote

the kth buffer's actual inventory at time ¢t, then we have

(3) 2,(t) =20 +X(), t>0 ,

providing that neither station k nor station o(k) is impeded
during the interal [0,t]. We need to modify equation (3) ‘so that it

is unconditionally valid. Thus we now introduce the lost potential

output process Y (t). The process Y, (t) should be construed as the
amount of potential output station k loses due to either starvation
or blockage during [0,t]. We can now express the actual output
process for station k by the difference ;k(t) - Yk(t). Therefore,
the actual input process to buffer k is given by the expression

g (t) - R (t) - ({d(k)(t) - Ya(k)(t)). This simplifies to

39
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xk(t) - !k(t) + Yc(k)(t)' Thus the proper generalization of equation
(3) 1s

(&) 2Z(c) =Z(0) +X(t) -Q(e)+ X (y(t), t>20 and k<K

We denote by Z and Y the vector processes (zl. zz, coes z‘) and

(Yl, Yz’ co ey !K+1

define Y precisely has again been skirted. We begin with the

) respectively. Of course the issue of how to
reasonable requirement that

(5) Y

k is continuous and increasing, with !k(o) =0 for all k .

Furthermore, the intended meanings of Y and Z suggest that they

jointly satisfy

(6) 0<z(t)<h for k=1, 2, «e., K and all ¢ > 0.

t
(7) I [bk:' k(')] d!k(.) =0 for k = 1, ose, L and all ¢t 2 0.
0

t
(® [ [(b, -2z (8)) & zJ(.)] d¥,(s) = 0 for k.= L+l, ..., K
0 Jell(k) and all t > 0,
i ]
(9) A z2,(s)] dY_,.(8) = O for all t > O.
0 jem(x+l) I K+l =

What we will now see is that (5)-(9) can actually be used to define Y

and Z in terms of X and Z(0) 1in precise mathematical terms, thus
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completing the specification of the model's (non-probabilistic)
structure. The following representation theorem will be proved in
Chapter 4. Here and later we denote by S the state space of the

contents process Z:

(10) S

[0,b1] X eee x [0,bK] z [0,b] .

(11) Theorem. Given X continuous with X(0) = 0 and 2z(0) ¢ S,
there exists a unique Y satisfying (5)-(9) with Z defined in terms

of Y by (4).

To complete our model specification, we need to impose distribu-
tional assumptions on the vector process E. Possible distributions
for § are presented in detail in the next two sections of this

chapter.

3.2. A Random Walk Model

One way to generate the process £ 1is to construct it from a
sequence of IID random vectors {{(n), n> 1} by summation and linear
interpolation. That is, define ), at integer times = by the

equation

||
(12) o™= I g ,
n=

and define i at non-integer times ¢t by linear interpolationm,

namely

41




(13) Ee(t) = ([e+1)-e) g ([t]) + (e=[e]) g ([e+1]) .

Here [x] denotes the greatest integer less than or equal to =x.

As was mentioned in Section 1.2, one can inteipret Uy(n) as
the total potential output of station k during the nth shift.
Furthermore (13) may be viewed as saying that work proceeds at the
fixed rate of [y(n) units per shift. Finally, note that the
components of the random vector { need not be an independent set.
However, we will &ssume in Chapter 6 that {{(n), n > 1} generates an
X process which 1is fully K-dimensional.

It is of interest to note that if K = 1, then this wodel
represents an extension of the classical discrete-time dam model to

continuous time. A good reference for the dam problem is Moran [10].

3.3 A Random Environment Model

It is useful to conceive of the random rate vector &(n) as
being determined by the “working enviromment™ of the anth shift. This
working environment concept allows us to generalize the model of

Section 2 in the following way. Suppose that each working environment

persists for a random period of time and that work proceeds at a fixed

rate for the duration of each working environment. Furthermore we
will allow for working enviromments to influence one another. There
are many interesting ways to implement this model. Por one specific
alternative, consider the following model. let 0 = {é(t). t >0} be

& continuocus-time stationary Markov chain with states 1, 2, ..., M.
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Let r(1), r(2), ..., r(M) be positive K+l dimensional vectors, and

define

t
(14) Ek(t) = 6[ tk(e(l))dl , for k=1, ..., ¥l and t > 0.

Equation (14) may be interpreted as saying that 6(s) is the
state of working environment at time s, and that the kth station
works at rate rk(e(s)) at time 8. Since ¢ 1s a stationary,
finite state Markov chain, it is possible to recursively define the
transition times to the successively visited states. That is, define

To =0 and T, recursively by

(15) T

inf(s > To-1’ 6(s) # G(Tn_l)} . for n>1 .

Now define the nth holding time <, by

ae) += =T . -T , for n>0 .

Furthermore, there exist strictly positive constants A(m), 1 { m < N,

and an M x M transition matrix Q which jointly satisfy

Qan P(Q(Tn_'_l) -3, .‘n >t e(-rn) ={) = Qij e‘l(i)t

for tz.o and 1,1 € {1, 2, eeey H}.
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The interested reader can refer to Chapter 8 of Ginlar {3] for a proof

-0, for 1-1,2,.--,Ho

of (17) and (18).

v~ v v
IR . ] o
ol L e,

RS O RS

T Y

R

ol e S

G
PR

PYRNY

4

R P YR




et -'l“ -
L Vodt e

— Ea nan At s
MM RN
L L

o Y PTVTY
P ENE Y e h

[ o Y
'.'.xJ< el

CHAPTER 4
THE REFLECTION MAPPING

We take as given integers K> L > 1, and a map o: {1,2,...,K}
+ {IL#l, eee, K+l} such that ofk) >k and o maps {1, 2, ..., K}
onto {L+l, ..., E+l}. Also taken as primitive is a vector b = (bl’
eee, bg) with by > 0 for all k. Let CK be the space of
continuous functions x: [0,») + RK, endowed with the topology of
uniform convergence. on compact intervals. Component functions are
denoted x4(t) for t >0 and j =1, 2, ..o, K. Let Cg be

the set of x ¢ CF such that =x(0) ¢ S.

(1) Theorem. Por each x ¢ Cg there exists a unique pair of

functions y ¢ CK*l and z ¢ CK satisfying
(2) zk(t) - xk(t) - yk(t) + ya(k)(t), k= l, ese K and t _>_ 0 »

(3) ’k(°) is increasing, with yk(O) =0 (k=1, oeo, K1),

4) z(t) e¢8, t>0,
t
(5)£(bk-:k(l))dyk(l)-0, k=1l, eee, L and t 20,
45
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k=Ltl, ..., K and

t
(6) (b, -z, (8)) A z,(s)]| dy (s) = O,
{)[“k"k 3 (9] &y, £>0,

Jell(k)
‘ and
: 1 ]
. (7) A z,(s)] dy, ,(8) =0 , t>0 .
ﬁ 0 jem(x+l) 3 K+l -

Moreover, setting y = ¢(x) and z = ¢(x), we have the following:

(8) Both ¢ and ¢ are continuous mappings on cs .

MR SR i

(9 Fix x e Cg and T > 0. Define x*(t) = 2(T) + x(T+t) -

Fj x(T), y*(t) = y(T+t) - y(T), and 2*(t) = z(T+t). Then
. y* = ¢(x*) and z*t = o(x*)..
I!! (10) Suppose x = x' on [0,t], then ¢(x) = ¢{(x') and
o(x) = ¢(x') on [O,t].

The proof of Theorem 1 is given in Sections 1, 2 and 3. In
Section 4 we produce a convenient bound for y. This bound will be of

interest only in Section 5.4.

Convention. For the remainder of this chapter the symbol o(k), when

used as a subscript, will be shortened to simply o. For example,

’a = ’a(k) or x o(k) ] xo, and so on.

4.1 Existence and Uniqueness

We begin by proving that conditions (2)~(7) are equivalent to the
conditions
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(11) yk(t) - oup< . ('k(') + ya(l) - lsk)+ , k=1,2, ... ,L
s

r‘ 0<s <

- and t >0,

’_'; (12) y.(t) = sup v (y,(s) - x (-))+ v (x, (8)+y (8)-b )+.

b 7 oc<s<t gemm 3 i BTk
#1<k<K ad t>0,

and
. (13) g (t) =  sup v ) - x Nt .
b K+l 0<s<t Jem(rel) I J

5 Suppose that y satisfies (2)-(7). To verify the forward

3

ti implication we start by showing that conditions (3) and (4) imply the
3 waakar conditions,

| (14) y()> sup (x () +y () -b), k=1,2, ..., K and
# k 0Cst X o hk
P . t>0,
1 and
I" )
F (15) y () 2 sup v (y,(s)=x O » Lk <K+l and
- 0<s<t Jem(xy 3 3

t>0 .

Observe that 0 < :j'(t), J € N(k), implies that yk(t) 2 yj(t)-xj(t).
Furthermore, since yk(t) 2 yk(n) 2 yk(O) =0 (t>s>0), it 1is now

obvious that y,(t) > I\jgn(k)(yj(l)‘lj(l))"' for s ¢ [0,t]. The last

e A NI

- .t

line is equivalent to condition (15). In similar fashion, it can be
shownn that (3) and (4) imply (14). Note that (14) and (15) together

imply

47

F':'. e S 20000 00 AL ol o8 (I SAAAGLIR MRS
s
. .




(16) y.(t) >  sup v (.=, N v (x (8)4y ()-b )"
B T 0cact gany 3 3 R

L <k<K and t>0.

Pix k ¢ (L+l, 142, ..., K}; we will now prove that (6) and (16)

- together iwply that y, satisfies (12). Begin by defining < =
sup{t > O: Vi satisfies (12) on [0,t]}. The definition of <«

implies that (12) is satisfied on [0,t). Suppose in contradiction

- .

that <t < . Then by the continuity of z and y it follows that

(12) 1is satisfied on [0,t]. By virtue of (16) and Proposition 2.7

L" there exists <9 > t such that <ty 1s a point of increase for
E,; y, and
\ 7, (g) > eup FRCACERONEANORESFORE SIS

0<s <7y Jeni(k)

The last inequality implies that (bk-zk(to)) Aj (k) E j(ro) > 0, and
#_ thus the continuity of z implies that there exists § > 0 such that
; (bk-'k(')) Ajen(k) 5 () D0 for s ¢ [10-6. 1:o+6] . Consequently we
- now obtain the inequality
|
[
-
[f,. T
. [ (b-z.(8)) A z,(s) dy.(s) > 0.
: 0 R k
i
:
3
£
3 48
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The last inequality contradicts (6), and therefore <t = «, Thus Yy
for k = I+l, L+2, ..., K, satisfies (12) on [0,»). In similar

fashion it can be shown that (5), (7), (14) and (15) together imply

Y . .
Pt .

(11) and (13).
To show the reverse implication, begin by assuming that y
satisfies (11)-(13). It is easy to show that (11)-(13) together imply
(3) and (4). PFix k ¢ {L+l, L+2, ..., K}. The function Y
satisfies (6) if and only 1if the set {t:(bk-zk(t)) A

Y en(k) %
has Y, measure 0. By the continuity of 2z, it therefore suffices

(t) > 0}

to show that Y increases at t only if (bk-zk(t:)) Aj €n1(k)
3 zj(t) = 0. Suppose that ykis increasing at t, then yk(t+e) > yk(t-e)
i
E" for ¢ > 0. It now follows from (12) that
s .
q (17 y, (t+e) = sup v (yj(s)-xj(S))
| t-e { 8 < t+te Jell(k)

Lo s e 4
o s

v ey (bt > y () > 0

Since yy{t+e) > 0, we can omit the “positive part operator” from

(17) to obtain

(18) y, (t+e) = sup v (v,(8)-x.(8)) v (x (8)+y (8)-b ).
k t-e < 8 £ tte Jell(k) ] J * 9 %
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::.ﬁj Since x and y are continuous, we can let ¢ + 0 in (17) to get
x_ V() = Vyenex) (yj(t)-xj(t)) v (x (t)+y (t)-b,). Therefore
(bk-zk(t)) A el(k) zj(t) = 0, This shows that (11)-(13) imply (6).
In similar fashion conditions (5) and (7) can be verified.

b From now on we will only consider the question of existence and
!.. uniqueness in terms of conditions (11)-(13). Before we can begin, we

need to introduce a great deal of new notation.

3 _-V‘r I e 4

For =1, 2, «v., K+l define a chain to station j to be an

ordered set of indices ¢ = (11, 22, ceey xm) which satisfies

q

- (19) 1< <L, =3,

-

- and

F“

! (20) 2y € n(zk) for k= 2, «0oc, m .

Define C(j) to be the set of all chains to j, i.e.,

(21) C(J) = {c: ¢ satisfies (19) and (20)} .

. Because o(k) > k the elements of any chain are necessarily distinct.

} : We will say that our network is M-stages long if the longest

chain to K+1 has M elements, i.e.,

50

e Aermttrs o B ™.




. A

T T T
-l

BEASYCTIC LA A §
- St ST

ST

T -

ST

T

(22) M = max{card(e): ¢ ¢ C(K+l)} .

Define the stages of a network in the following way.

(23) S = {k+1} ,
and
(24) S(M-n) = {§: § € M(k) for some k ¢ S(M-utl)}

for n = 1, svey M-1 .

Define E(n) for n =1, ..., M1 as follows:

(25) E(n) E_S_(lrl'l) - {1, 2, seey L} °

In words, E(n) 1is the set of stations which receive inputs from
S(n).

We now introduce the important inequality constraints

+
k 0<s<t *x c bk

+ +
(27) y,(t) £ sup v (y,(s8)=x,(8)) v (x, (8)+y (8)-d, )
K Z0csct g 3 3 ke Tk

for k= L#+l, .., K and t >0,
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+
(28) y,, . (t) < sup v (y,(8)=x,(8)) for t >0 .
BT “0cace gy 37 3 =

Let U be the class of positive, continuous, increasing (component-

wise) vector functions which satisfy (26)-(28).

(L

For =1, «.., M1 define h("):y_-»g and g "': U+ U as

follows:
29) Mo

sup v (yj(s)-xj(s))+ v yk(s) for k e E(1)
0<s <t jen(k)

7.(8) for k ¢ EC1)
and

30 g

sup  (x (s)4y (8)-b )" v y (8) for k e S(M-1)
0<s<t x ° By k
7, (&) for k ¢ S(M-1)

(2) and g(“) preserve

(31) Remark. It is easy to verify that h
the inequalities (26)-(28). Furthermore, if y satisfies (11)-(13)

on [0,7] then g(y) =b*(y) =y on [0,T].
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Now define H: U+ U and G: U+ U by the relations:

(32) u(y) E h(“-l) . h(u-z) o e00 o h(l)(y) .
and
(33) G(Y) g S(H-l) ° g(u-z) e ooe o g(l)(y) .

(34) Remark. H and G dinherit from hu) and g(‘o

the prop-
erties given in Remark (31).

Our immediate goal is to show that if y ¢ U satisfies (11)-(13)
on [0,T] then (GeH)(y) satisfies (11)-(13) on [0, T™+8] where

8 > 0. We begin this task with the following remark.

Remark. Suppose that y satisfies

-1
(35) sup vy DT <y () for ke v En)
0<s<t Jel(k) 3 n=1

2

=] _!_(ll), hix)(,) satisfies (35) for

and t > 0. Then for k e¢ v
t> 0.

(36) Proposition. For k ¢ {L+l, ..., K+l}, He(y) satisfies (35)
for t Z 0.

Proof. Use the previous remark recursively to deduce that Hy(y)

M-1

satisfies (35) for k ¢ i

E(n). Finally, note that the surjective-

ness of ¢ implies that u:: E(n) = {I+1, ..., K+l}.
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Define Ly to be the subset of U which satisfies (35) on

[o,r] ) 1... »

(37) Ly = {y ¢U: for k = 1Ltl, ..., K+l, y, satisfies (35)

on [(O,T]) .
(38) Proposition. Suppose y ¢ U and
€39) y satisfies (11)-(13) on [O,T] ,
and
K
(41) sup '*(‘1)“('2“5 A b .
TSs L8, <TH n=1

Then for every L ¢ (1, 2, ¢eo, M1}, g(”(y) € L‘H-a’

Proof. We need to prove that for k = L#l, ..., K+l, gﬁ”(y)

satisfies

W) ey v @D -5 @) gV
0<s<t em(k)

for t ¢ [0, ™8] .
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Observe that (42) is a trivial consequence of (40) 1if k ¢ S(M-+1).
Suppose that k ¢ S(M-2+1) and let t ¢ [0, T+8). Since z("‘)(y) -y
on [0,T], it can be assumed that t ¢ [T, T™+8]. It suffices to show

that j ¢ (k) satisfies

(43) s (P50 - x6)* <P
T<s<t

Let s ¢ [T,t]. If 8.‘(1”(’)(.) = yj(l). then

£V - 260" = (7,02, Cr(o) < P .

1¢ g:(,”(y)(') > yy(s), then there extsts u ¢ [T,s] such that

xg“)(y)(-) - xj(u) + ’k(“) - "j' Therefore

(2) + +
(z.1 (y)(s) - xj(-)) - (xj(u) - "_1(') + yk(u) - bj)

K
A (£)¢e)

(A by =b +y @) <y (0 < gy

o=l
Consequently (42) must be wvalid. Q.E.D.

(44) Corollary. If y ¢ U satisfies (39)-(41) them G(y) ‘k'ﬂ-&'

The proof of the corollary follows easily from recursive use of

Proposition (38), and therefore will be omitted.
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Remark. If y ¢ U satisfies

(45) sup (x,(s) -y (l)-b)+$y
0Csgt k ] k k

for k¢ U:’:i S(M-n) and t > O, then for k ¢ ":-1 8(#-n), 8:”(’)

satisfies (45) for t > O.

Also observe that the surjectiveness of o implies that

M1

uu-l

g(l-n) bd {1, 2. soey ‘}.

Now use the previous remark recursively to deduce the following
proposition.

(46) Proposition. If y ¢ U then Gy(y) satisifes (45) for
k-l, essy K and tzoo

We now introduce the following important result.

(47) Proposition. If yc¢ U and y satisfies (11)-(13) on [0,T],
then (G-H)(y) satisfies (11)-(13) on [0, T+8], where § satisfies

K
sup lx(ol) -x(sy)i < A b .
T8, <8, TV =1

Proof. Remark (34) and Proposition (36) together guarantee that H(y)
satisfies (39)-(41). Corollary (44) guarantees that (G-H)(y) ¢
Lpyge Proposition (46) guarantees that (GeH)(y) satisfies (45) on




" P

(0,»). Remark (34) implies that (G+H)(y) ¢ U. Observe that
(GeH)(y) € Lppg " U and condition (45) together imply that

(GeH)(y) satisfies (11)~(13) on [0, T+§]. Q.E.D.

let A and N be defined as follows:

(48)  ACe) = sup{s > O; sup 1(x(s))x(s,)8 < ¢} ,
0<s <8 <8, +8<T
and
K
(49) N=[T/aC A BO]+1 .
n=1

Remark. When necessary we will append arguments to A(e) and N to

indicate their dependence on x and T.

(50) Lemma. (G-H)N(0) satisfies (11)-(13) on [0,T].

Proof. Observe that O ¢ U, and thus Proposition (47) implies that
(GsH)(0) satisfies (11)-(13) on [0, A(A:_I b)]. Now by induction
the result will follow. Q.E.D.

Define ¢(x) as follows:

(51) o(x) = (cem)N0) .

Due to typographical considerations, we will often use y = ¢(x),
except when x 1is allowed to vary.
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We will now show that ¢(x) 1is the unique element of U which
satisfies (11)-(13). We begin by showing that ¢(x) 1s the “least”
solution. Observe that if w ¢ U which satisfies (11)-(13) on [O,T],
then (G*H)(w) = v on [0,T]. Since G-H is a monotonically

increasing operator, it follows that

(52)  @(x) = Gm¥0) < GemT(w) = w on [0,T] .

The following remark is a direct result of Proposition 2.l1l.

(53) Remark. If w satisfies conditions (11)-(13) om [0,T] and
" is iucreasing at t ¢ (0,T] then either ::(t) - bk’ or there
exists j ¢ IKk) such that z:(t) = 0,

For the remainder of this section, let y = ¢(x) and w e U,
such that w satisfies (11)-(13) on (0,T]. The functions y, w

satisfy the important order relationship given in the remark below.

(54) Remark. Suppose that for t ¢ [0,T], ::(t) =0 and va(t) >
yc(t). Then w (t) > y (t).

The next proposition is essential to the proof of the uniqueness

_, of vy.

q

(55) Proposition. If the functions y and w given above satisfy
2

: (56) y=wv on [0,%],

[
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(57) sup l:'(ol) - 8'('2)| L Ab/2,
<8, <8, <t o=l

and
(58)  there exists k ¢ {lL+l, ..., K} such that z:(t) =0 ,

then 'U(t) - ’g(t)'

Proof. Suppose in contradiction that 'a(t) > yc(t). Remark (54)
implies that wk(t) > yk(t). Proposition 2.7 now implies that there
exists ¢ e (t,t] such that 'k(tl) > yk(tl) and “ is increasing
at ti. Remark (53) implies that either "k'(tl) = "k or there exists
k, € (k) such that ‘:l“i’ = 0. Conditions (57) and (58) together
dissllow the former possibility. Therefore, we deduce that there

' -
exists k; e (k) such that zkl(tl) 0 and w(t,) > y ().

Observe that t, and k, satisfy our hypotheses on k and t.

1 1
Therefore by inductively using the previous argument we can deduce

that there exists (kl, "z' eoe, kr) and (tl, | S tr) which

2
satisfy:

(59) =z (¢

j j) - o ‘nd 'k (tj) > ’k (tj) » j - 1’ sy r’

(60) kj_l - C(kj) where ko =k and j - 1' seey T ,
(61) tj ¢ (v, tj-ll where t, =t ad j =1, .o, T,

and
(62) kr e {1, 2, eee, L}
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Condition (59) and Remark (54) together imply that wy (tp) > yx (t;).

By imitating the primary argument, we deduce that there exists

tre1 € (t,ty] such that wg (try1) > yi (try)) and that w 1s

increasing at tpy). Remark (53) implies that 5 o CErel) = by,

But the equality s=p r+1(tr) = 0 and condition (57) imply that

= (trs1) < sk (tp) + by /2 < by . This contradiction implies that

our initial assumption is wrong. Therefors w c(k)(t) -y d(kSt).
Q.E.D.

(63) lemms. Let y = ¢(x), and suppose that w ¢ U satisfies
(11)~(13) on [0,T]. Them y=w on [O0,T].

Proof. Set t =sup{(t {T: y=w on [0,t]j}. The coatinuity of y
and w implies that y=w on [0,r]. Since z¥ 1s continuous

there exists t > t such that zV gsatisfies (57). Now define

(64) 2 = max(({-1} v {n for which there exists § > 0 such that
wk(s) = yk(l) whenever s ¢ [0; ++8] and

n
ke v S(Mm))).
=0

Suppose in contradiction that £ < M-1. By definition of 2 there
exists k ¢ 8(M-2-1) and t, ¢ (v,t] which satisfy 0 < y,(t,) <
'k(to)‘ Proposition (2.7) implies that we may assume without loss of
generality that w,  is increasing at to. Remark (53) implies

that either
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v,
(65) 5ty = b,
or
(66) ::o(co) -0 vhere ke M(k) .

We will now show that only (66) is possible. If k = K+l then only
(65) 1is possible. If k < K+l then suppose (65) is true. We obtain

(67) by = z(t) = x,(to)-w, (to)Hw (t)

=x (t )-w (t )+y (t.) < x (t )=y (t )y (t.) .
b Al Ul AL TR AP LT LI A T4 A YA R

Line (67) implies that b < {(to) £ b . Therefore we deduce
that only (66) is possible. Proposition (55) now implies that vk(to)
- yk(to), but this contradicts our assumption that ‘u(‘o) > yk(to).
Therefore our initial assumption that £ < M-1 must be false, and
thus L = M-1. The definition of £ implies that there exists §> 0
such that w=y on [0, v#5]. The last line contradicts our defini-

tion of 1. Therefore t =T and thus w=y on [0,T]. Q.E.D.

4.2 Continuity of the Mapping

We begin by defining the mapping ¢: CK » CK by

(68) Qk(x) zx, - ka(x) + 4.6(:) . for k=1, ..., K.

et e T SR —]—
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(69) Theorem. The mapping x + (¢(x), ¢(x)) 1s continuous from
cK to C2FFl ien respect to the topology of uniform convergence

on finite intervals.

Proof. Since C2K+l 44 4 product space, it suffices to show that

both ¢(x) and ¢(x) are continuous. We begin by showing that ¢(x)

(2

is continuous. We will now interpret h(z), g€ ', H and G as being

mappings from c2K+1 to C2K+1 in the following way:

2,2 = Py, x for L= 1, eer, M1 ,
s(x)(y.x) H (g(l)fy). x) for =1, ..o, y—l .
2(y,x) = (a(y), x) ,

and

6(y,x) = (6(y), x) ,

where h(x)(!). 8(1)(7); H(y) and G(y) are defined by (29), (30),
(32) and (33). Since the continuity of mappings is preserved by

composition, it follows that H and G are continuous as long as

) 0

and g are continuous maps for 2 ¢ {1, ..., M~1}. We will

€}

now prove that h is a continuous map. Let T > 0 be given. We

need to show that h(l) is a continuous mapping on c2‘+1

2K+1

{o,T].

Let (y,x), (y',x') ¢ ¢ '[0,T], and let k e E(1);
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= | su IICACEXONEEAD
0<s<t je(k)

- s v (3 @-xie)* v yi(e)
0<s<t Je(k)

T0<8s<t 0<s<t

£3 sup I(y(s),x(s)) ~ (y'(s),x'(s))
08T

Caaa

= 3i(y,x) - (y',x")0 .

-y

Tl

Therefore,

(
0<t<T

T
. i . . . '

obtain

-

an Py, - 2 x

Py TP
PP | CENCRE A

K+l

2 eup h:‘)(y.x)(t) - hﬁ‘)(y'.x')(t)

: 0 e r ey |

£ (y,x) - (y',x")1 .
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< sup 1x(s)=x'(s)0 + 2 sup ty(s) - y'(s)1

a0 | s 5P - 5Pt anw) | < 3 - G .

It 1is easily verified that (70) holds for k £ E(2). Therefore we
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Line (71) implies that h(%) is continuous. In similar fashion it
(x)

can be shown that g is continuous. Therefore G and H must be
continuous, and thus (GeH)® 1is a continuous map for any fixed n.
Moreover, the mapping x + (0,x) is a continuous mapping from ck
to szﬂ. Now observe that (¢(x),x) = (c-n)"(")(o,x). Suppose that

N(x') > N(x), then the invariance of ¢(x) 1implies the equation

(c-a)“(")(o,x) - (c-n)N<"')'“(")(¢(x). x) = ((x), x) .

Therefore, it suffices to show that N(x) 1s a locally bounded

function of x. Define M(x) by

K
M(x) = [1/a(x, & b /2)]+1 .
o=l

K

If x' ¢ CX[0,T] such that SuBgeeer X)X (1S 4 B /4, then

N(x') < M(x). To see the last inequality, note that

sup I1x'(s,) - x'(s))1
0<s L8, <o TALT
< sup [1x'(s)) - x(s )0
0<s, <8, <8, *ALT
+1x(s,) - x(8,)1 + 1x(s,) - x"(s 1]
K K
1 1.1
< Ab(z+5+7)= A b _,
= ael n'éd 2 4 o=l D
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K
where A = A(x, Apel bn/2).
K

Therefore by definition of A we find that A(x', A=l bn) pd
Alx, A:_I bn/Z)’ The definition of N and M together imply that

N(x') < M(x). We now see that the mapping (4¢(x'), x') =
(c-n)“("’(o,x') is locally a fixed power of GeH. It is now clear
that (¢(x), x) and ¢(x) are continuous. Since ¢(x) = (d¢(x), x)e-A,
where A is a 2K+l by K wmatrix, it also follows that ¢ 1is

continuous. Q.E.D.

4.3 Additional Properties

(72) Lemma. PFPix xe¢ Cg and T > 0. Let y = ¢(x) and z = §(x)
as before. Define x*(t) = z(T) + x(T+t) - x(T), y*(t) = y(T+t)-y(T),

and z*(t) = zg(T4#t). Then y* = ¢(x*) and z* = ¢(x*).

Proof. If y* satisfies (11)-(13) for x* then the equality y* =
¢(x*) will follow from Lemma (63). We begin this task by showing

that y* satisfies (12) for x*. Let k ¢ {L+l, ..., K} and t > 0
be given. Suppose that y:(t) > 0, then yk(‘l‘H:) > yk(‘r). From (12)

it follows that
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yi(T+t)-y{(T)

- sup v (5. (8)=x, (8)-y (T v (x, (s)4y (8)-y. (T)-b )7
T<s< ™ jeam(k) 1 1Tk e TR

- sup v (y,(8)~y,(T)~x, (8)+x, (T)+y, (T)-x, (T)-y an*
T<s < THt jeH(k)[j | 3 3 3 ; k

v (x (8)x, (THy _(8)-y (T)x (THy (D=3, (D)-b)"]

+ +

= sup v (yg(s-T)-xg(s-T)) v (xi(s-T)+y:§s-T)-bk) .
T <8 < ™t jell(k)

The last equality is obtained from the previous expression by using

the definitions of y* and x*. If u = g-T 1s substituted for s

in the last line we deduce that

+ +
y, (T4+t)-y, (T) = sup v (y*(u)-x*(u)) v (x*(u)+y*(u)-b, )
k k 0<u<t jemk) 3 ~ 3 At

The last line shows that yi satisfies (12) whenever yi

now suppose that y{(t) = 0. Then yk('ﬂ-t) = yk('r), and thus (12)

> 0. Let us

implies
y,(T+t) > sup v (o= N v (x (8)4y (8)-b)"
T T rce< ™ geanw 3 LR
= euwp v (AGe-D-xy(e-Ty (M)
T < Tt Jell(k)

v (g (s=TryA(T-t)4y, (Db .
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The last equality follows again by simple substitution. Now

substitute u = g-T to obtain

(73) g (T+) > sup v (x4 o)
0<u<t jel(k)

v (xh(uryt iy, (Db

Since yk(T+t) = yk(T), it follows from (73) that

+ +
(74) O = sup v (y*(u)=x%(u)) " v (x*(u)+y*(u)-b,) .
0Cu<t jemxw 3 3 R

Therefore, it now follows that y* satisfies (12) for x*. 1In
precisely the same fashion it can be shown that y* satisfies (11)
and (13) for x*. Thus we have shown that y* = ((x*). It remains to
show that z* = $(x*). Let k ¢ {1, 2, ..., K} be given,
Ok(X*)(t) S xz(t)-¢i(3*)(t) + ¢d(x*)(t) - x;(t)-y;(t)+7:(t)
- zk(T)+xk(T+t)-xk(T)-yk(T+t)+7k(T)+yo(T+t)-yc(T)

- xk(T+t)-yk(T+t)+yd(r+c)+zk(T)-zk(T)

- zk(T+t) H zg(t) .
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Therefore, it now follows that z* = ¢(x*). Q.E.D.

In the preceding b was taken to be fixed; in this part b will
be allowed to vary. let xe¢ Cg and b = (b, ..., bx) where
by > 0. Define 4(x,b) to be the function determined by
(11)-(13). Define ¢(x,b) in terms of x and ¢(x,b) according to
(68).

(75) Lemma. The functions ¢(x,b) and ¢(x,b) satisfy

(76) oEEL b)) = V2 gix, 2 b))
e )
and
an o= b)) = £V2 4z, /2 b)re) |, where x> 0.
r

Proof. Set w = ¢(x, t1/2 b)(re). We will ghow that r-llz w

/2

satisfies (11)-(13) for x(re) el and then apply Lemma 63 to

deduce (76). Let k ¢ {L#l, ..., K} and t > O, The function w

satisfies by definitionm:

(78) wk( t) = sup v (w

& - x, (sN*
0<s<rt g 3° 3

v (xk(l) + 'o(-:") — bk)+ .

Substitute u = g/r into (78) and simplify to obtain
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(79) v () =  sup v (e - x ue)?
0Cu<t Jfemk) I 3

v (xk(ur) + 'c(“) - £1/2 bk)+

Divide equation (79) by r1/ 2 to deduce

(80) r°1/2 'k(t) - sup v ('j(“) r 12 _ xJ(ur) r-1/2)+
0<u<t jen(k) :
v (xk(ur) r-l'/z + wa(u) r-llz - bk)+ .
-1/2 -1/2

Equation (80) implies that r w satisfies (12) for x(re) r

- and b. Similarly it can be shown that r-llz w satisfies (11) and

1/2

(13) for x(re) r and b. It now follows that (76) is valid.

To prove (77), begin by observing that

wxre) 2 ) s HED g (x(ee) V2, 1) 4 g (xtr) £

Use (76) to deduce that

-1/2

o (x(xe) £H2, b
= xtr) £ 2o M2y, My + Y2 e B
T2 (x(r) - gtz 2 0 + o (2, 2 0)]

2 oz )z
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Therefore (77) holds as well. Q.E.D.

(81) Proposition. Let x, x' ¢ Cg, and suppose x = x' on [O,t],
then ¢(x) = ¢(x') and ¢(x) = ¢(x') on [O,t].

The proof of Proposition 81 can be easily derived from equation

(51) and the definition of GeH. Therefore we omit the proof.

4.4 A Bound for the Boundary Process

Let we CK*l x ¢ CK, and T > 0 be given.

(82) Proposition. The mapping GeH satisfies

(83) 1(GeH)(W,x) 1 = sup 1(GeH) (w,x)(t) 1 < 24(ix1 + Iwl) .
0<t<T

Proof. Observe that g{) and h(%) satisfy

(84) lhu)(v,x)l £ vl + 1xt , for A= 1, 2, s0es, M1 ,

and

(85) 18,0 v+ ax1, for 1=1, 2, ..., N1
Since GeH = g(n_l) * see o g(l) . hm-l) ¢ see o h(l), line (83) now

follows from (84) and (85) by recursion.

(86) Corollary. The mapping x + (G°H)(0,x) satisfies
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(87) 1(G-B)(0,x)1 < 2M(Ix1) .

(88) Lesma. Let x ¢ CX be given. Then

K
(89) 16(x)(T)1 < N(x) « &4M( v bn) .
n=}

wvhere N = N(x) 1s defined by (49).

Proof. The proof proceeds by induction on N. If N =1 then (49)

implies that
K
(90) sup 1Ix(0) - x(s)0 < A b .
0<s<T =1
Since x(0) ¢ S, it follows from (90) that
K K
(91) Ixt <Ix(O)4 + A b <2 v b oo
n=] =]

Line (91) and Corollary 86 together imply (89).

Now suppose by induction that (89) holds for all z ¢ CK such

that N(z.T) <m and all T > 0. Let x ¢ CK guch that N(x,T) =

mrl. Define x* ¢ CK as follows,




s i
.. . S

e

g

(92) x*(t) = ¢(x)(3) + x(t+a) - x(8) ,

where A = A(x, A:_l b) is defined by (48).

The definition of N implies that N(x*, T-A) { m. Therefore

K
(93) 16(x*)(T-A)1 < (N(x)-1) 4&M( v1 b)) .

n= ;
Lemma 72 implies that }
(94) e(x)(T) = ¢$(x)(A) + ¢(x*)(T-4a) .

Lines (93) and (94) and the induction hypothesis together imply (89).
Q.E.D.

(95) Corollary. Let x ¢ CK satisfy x(0) = 0. Then

K
(96) sup  14(xy#x)(T) 1 < N(x) M( v bn) .
X € 8 o=]

Proof. Observe that N(x) = ll(xo-i-x) for any X, € S. Line (96)

now follows from Lemma 88. Q.R.D.
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This chapter is devoted to study of the K-dimensional stochastic

process Z = §(X), wvhere ¢ is the reflection mapping of Chapter 4
and X 1s a K-dimensional Brownian Motion (with arbitrary drift and
covariance matrix). It will be shown that Z 4s a diffusion process,
and some of its properties will be explored. In particular, it will
be shown that Z has a unique stationary distribution, and an

analytical characterization of that distribution will be developed.

5.1 The Diffusion Property
This section begins with the introduction of notation necessary

for defining a diffusion process on BK,

Let I be a rectangle on RK and let CI be the space of
continuous functions from [0,») to I. Let (Q,F) be a measurable
space and suppose Z: Q + CI, Denote Z(w)(t) by 2(t). Let Fp

be a filtration of o-fields such that

(1) Z(t)eX cF, for t>0.

For each x ¢ I, let PX be a probability measure on (Q,F). lat
t: Q + [0,0]. Ve say that <t is a Markov time relative to (I,

t>0) and (PX, x ¢ I} 1if
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(2) {‘t_(_t)c!t for t>0 ,

(3) Pt < e =1 for xc1.

Let F, be the pre-t field, i.e.,

(4) L‘E{Acngn(tSt}e for t > 0} .

r,
We will call {Z(t), t > 0} a diffusionon I 1if
(5) PX(2(0) = x) = 1 for all x ¢,

and for all bounded, continuous functions on 1 and all Markov times

h

(6) £ 1£(z(e+) |2 ] = B P ea(e))) as. P*.

For the remainder of this chapter let Q = CK, Denote a
generic element of Q by w = ((wi(t), ..., wg(t)); t > 0). Let

X be the coordinate prucess on Q, i.e.,

N X(w,t) = w(t) for t>0 and weQ .

Denote X(w,t) by X(t).
Let ¥ be the Borel field on Q generated by the topology of

‘uniform convergence on compact intervals. Let !-t E A 0 o(X(s):
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- 0 s tte}. For each x ¢ Rx, let PX be the probability

measure on (Q,F) under which X is a Brownian motion with drift
vector p, positive definite covariance matrix A, and starting state
x. Define Z = ¢(X) and Y = ¢(X) with the reflection map (¢,4)
ﬁ given in Chapter 4.

Let t be a Markov time; define X* and Y* as follows:

(8) *(t) = z(x) + X(+v+t) - X(v) for t >0, :
9 and
9 Y*(t) = Y(++t) - (<) for t>0.
-

We will now prove that {Z(t), t > 0} is a diffusion on S. But

first we need to prove several preliminary propositions.

s (10) Proposition. For every ¢t > 0, (¥(t), Z(t)) ¢ F.
£ Proof. This measurability property follows easily from the measur-

ability preserving property of GeH (see Lemma 4.50). The measur-

ability of GeH in turn follows from Proposition 2.16.

(11) Proposition. Every Markov time <t and every bounded random

varisble W ¢ o{Z(<), X(+v+t) - X(¢), t > 0} together satisfy

8 (12) !x[ii'!‘l - z"[w|z(r)] a.s. P for xeS.
Proof. By the usual monotone class argument it suffices to show that

& W= £(2(2) « £ (X(tHt )-X(2)) eos £ (X(z¥t)) = X))
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satisfies (12), where f§5, 3 = 1, «¢., n, is a bounded Borel

function and 0 < t, < ¢t

1 2 € e0e ¢ tn. Observe that if 2Z(<) Clt' it

follows that

(13)  EW|R ) = £,(2(s)) EV[£ (X(e))-X(x))
see £ (XCert )-X(xD [P ] .

By the strong Markov property of Brownian motion it follows from (13)
that

(14)  E(W|R ] = £,(2(x)) E'[£, (X(vHe )-X(1))
oo £ (X(v+e )-X(s))] .

Notice that the last expression is a function that belongs to o(Z(x))
and therefore (12) must hold. It now suffices to show that 2(«)

€ F.. To show this, begin by observing that if <« is countable the
result is easy to prove. Notice that <, = [nt+l]/n 1s a Markov
time. Therefore Z(vy) ¢ Py . But Fo = Foy = Aya) Py o Since 2

is continuous we have

z(1) = lim z(fn) € A !1 - . Q.E.D.

F
n+e n=1 a °
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(15) Lemma.

E¥[£(2(v+)) [E, ) = B2 [£(2(e))] a.s. P*
and

E*[g(x(v+) - W) |E ] = 2 (g(x(w+t) - Y(1))] a.s. PX,

where f and g are bounded, continuous functionms.

g Proof. Line (4.9) and Proposition 10 together imply that

L; (16) £(Z(v+)), g(X(wH) - Xx)) € o{X*(e), t > 0) .

Line 16 and Proposition 11 together imply (15).

(17) Theorem. The process {Z(t), t >.0} is a diffusion on S.

Proof. Observe that (5) follows from the identity 2z(0) = X(0).

Condition (6) was verified in Lemma 15.

5.2 Ergodicity
In this section we will prove that Z satisfies the conditions

of Theorea 2.59.

(18) Proposition. Lat W be the standard K-dimensional Brownian
motion on (0,T] with W(0) = 0. Suppose B 1s an open set of the

form:
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(19) B

{y: tyx1 < ¢} , where x satisfies

(20) x(t) = ct , t € [0,T] and ¢ ¢ RK .

Then P(W ¢ B) > O,

Proof.

P(W ¢ B) =P{ sup wW(t) - ctl < ¢}
0<t<T

K

= 0 P{ sup (t) ~ e, t| <€} .
k=1 og:grl“k |

Observe that 1f c = 0 then the result follows from elementary
properties of l-dimensional Brownian motion. For cg # 0, the usual

likelihood ratio argument (for example, see (2.53) above) will show
that

(21) P sup (t) - t] <e)>0. Q-EOD.
(ogc_<_'r|“k | <)

(22) Corollary. 1f X 1is any fully K-dimensional, Brownian motion
with X(0) = 0 then P(X ¢ B) > O.

Proof. We can represent X as
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(23) X= AW + put

where A is a K x K non-singular matrix and u 1s a K~dimensional

vector. Observe that there exists § > 0 such that

{w: sup w(e) - Afl(c-u)tl <8} c{X eB} .
0<t<T
Therefore P(X ¢ B) > 0 follows from Proposition 18.

(24) Proposition. The process Z satisfies property (2.60).

Proof. Let z,y ¢S, and T,e > 0 be given. Define Q a subset of

X as follows:

{x ¢ C%: I1X(T) - y1 < €} .

o
"

Define

{(W:1Z(T)-yl < e} = {w: X ¢ 0-1(0)} .

Since 4 is continuous and Q is open, it follows that ¢~1(Q) is

open. Define

o M-z = (x(t)-z:  x(t) € ¢ HQ) .

Clearly Q-I(Q)-z is open. Furthermore, the function (1 - t/T)z +
(t/T)y belongs to Q-I(Q). Therefore x(t) = (t/T)(y-z) belongs to

Q-I(Q)-z. Corollary 22 now implies
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(25) PE(Z(T) € (5-¢, y+e)) = PO(X € ¢ (Q)-z) > 0 .

The general result follows easily from (25). Q.E.D.
(26) Proposition. The process Z satisfies property (2.61).
Proof. Let f ¢ C(S) and x e S be given. Observe that

(27) EV(£(2(s)) = EC[ECo(3+X)(a))] .

Since ¢ 1s continuous it follows that

(28) £(o(y+X)(8)) + £(o(x+X)(t)) a8 8 »t and y+x .

Since f is continuous and S compact we have

(29) £(o(y+R)(8)) | < 1£1 .

Lines (27), (28), (29) and the Dominated Convergence Theorem together

imply that

(30) 1m BV (£(2(s)) = EX(£(2(t)) . Q.E.D.
s+t ,y»x

(31) Proposition. Every state of the Brownian motion X is
diffusion-like.
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Proof. We begin by observing that the spatial homogeneity of the X

process allows us to consider only the 0 state. There exist a
nonsingular K x K matrix D and K-dimensional vector ¢ such that
W(t) = DX(t), where W 1s standard Brownian motion with drift c.

Define B, = {D"lx: ¥x) < r} and <t by

(32) t = inf(s; X(8) ¢ aBr} .

Let Q be a measurable subset of Ry x 3B, and define Q* = {(s,Dz)

where (8,z) € Q). Thus it follows that

(33) P*((<, X(%)) € Q = P*((x, W(1)) € Q%) .

Line (33) and Proposition 2.50 together imply that

(34) 1a  sup [P%((z, X()) € @) - B2(5, X)) € Q)| =0,
x+0 QeQ ‘

where Q is the class of Boreli measurable subsets of Ry x 3B..
Finally, PX(t { @) = 1 because Brownian motion always escapes

bounded neighborhoods.

(35) Propositinn, The diffusion-like states of Z are dense in S.

Proof. Since Z behaves like X in the interior of S, the

proposition is implied by Proposition 31. Q.E.D.

Proposition 2.59 now implies that Z 1is an ergodic process.
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5.3 A Change of Variable Formula

It will be convenient to represent X in the form X(t) =
W(t)+ut where W = {W(t), t > 0} 4is a Brownian motion with

covariance A, zero drift and W(0) = X(0) = Z(0). Then we have

(36) Zk(t) - Wk(t) + Hk(t) .
where
(37) Mk(t) = ut - Yk(t) + Ya(t) , t>0,

for k=1, ..., K. Observe that Wk is a martingale over {zt}

and that My 1s a continuous adapted process of bounded variation.
Thus each Z; 1s a continuous semimartingale, and one can develop

the analytical theory of vector process Z from the following version
of Ito's formula: For twice differentiable functions on RK define

the (constant coefficient) differential operators

K K 2 K

of
121 jzl i3 axlaxj izl i axi
and
d o)
(39) D = v ialvaa for k- 1, QQQ,K »
k Jeli(k) 385 bxk
and
(40) D, = 2,
K+l jengl@-l) ox,

Observe that Dy is the directional derivative in the direction of

reflection at the boundary {zk = hk} v { 0}. Por

Mem(x) %5 =
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k = K+l1, Dgy) 1is the directional derivative in the direction of

reflection at the boundary ({ 0}. Let S (for smooth)

Mem(x+1) 4"
be the class of functions f£f(t,x) that are continuously
differentiable in t > 0 and twice continuously differentiable in

X € RKO

(41) Theorem. If f ¢ S then

t
(42)  £(t,z(t)) - £(0,2(0)) = (f, [g—fI (s,2z(8)) + L£(s,2(s))] ds

of
+ -— (8,Z(8)) dw, (8)
kzltf) ox, k

K;fl It (s,Z(s) (s)
D, £(8,Z(s)) 4dY, (s
+ k=1 0 k k

for all t > 0. Here the integrals involving dWy(s) are of the
Ito type, and those involving dYy(s) are defined path by path as

ordinary Riemann-Stieltjes integrals.

Proof. By making minor changes in the proof of the Kunita-Watanabe

[9] change of variable formula it can be shown that the following

equations are valid.




t
(43) £(t,2z(t)) = £(0,2(0)) +£ -g—. £(s, Z(s)) ds

K ¢t

0
+ f(s,2(s)) (s) + £(s,2(s)) ds
2 I 3, e kzl 0 uk °xk

t 2

s OX; [ 2, a6 ,

313
2-3-0 b

where the differentials are computed from (36) and (37) in the obvious
way and

(44) dz, (t) dzj(t) =8, de

by convention.
Equation (42) is now obtained from (43) and (44) by simply

collecting terms.

(45) Definition. Define Sy as follows:
(46) sk z {x ¢ S: x, = bk} for k=1, ..., L

(47) (]

{x ¢ 8: A x.)(x,=b ) =0) for k = L+l, ..., K
k Geno™) ™

w8 s,

{x ¢ 8: A x, =0} .
Jen(r+1) 3
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(49) Corollary. Let f ¢S and suppose in addition that
(50) Dkf(t,x) =0 for x ¢ Sk and k=1, ..., K+l
over the interval 0  t < T. Define
t
(51)  M(t) = £(t,2(t)) - {) [52 £(s,2(s)) + L£(s,2(s)) ] ds .

Then {(M(t), Fi); 0 <t < T} is a martingale.

Proof. If (50) holds, then each term in the final summation on the

right hand side of (42) vanishes, because Yy(e¢) increases only at

those times where Z(t) ¢ Sy. Thus Theorem 41 implies that

K ¢t
d
(52) M(t) - M(O) = 2 [ W £(s,2(s)) dwk(s) , 0<t<T.
k=1 0
Observe that the continuous functions 3/ dx) f, .c., 3/3xy £ are
bounded on the compactum [0,T] x S. Consequently the integrands of
the Ito integrals of (52) are bounded, so the right hand side of (51)

must be a martingale,

(53) Corollary. Let h: S + R be continuous. Suppose that f ¢ S

and that f satisfies condition (50). If

(54) §—= £(t,x) + LE(t,x) = 0 for x ¢S and t ¢ [0,T] ,
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and 1if

(55) £(T,x) = h(x) for x ¢ S
‘then

(56) E[h(Z(T))] = E[£(0, 2(0)] .

The proof follows immediately from Corollary 49.

5.4 The Stationary Rquation

Let M be the stationary distribution for Z, meaning that

(57) m(A) = [ n(dx) P (x,A) for all t D> 0
A

and A a Borel measurable subset of S, and where P¢(+,¢) 1is the
trausition distribution for 2.
Let E* be the expectation operator associated with II. PFor

k=1, 2, oo, K+¥1 define v a finite measure on § as

1
(58) v (A) = E* [ 1,(2(t)) 4y (e) .
0

Later in this section we will prove that vy 1is indeed a finite

measure on S.

(59) Theorem. The measures ver =1, 2, «0o, KFl, and T satisfy

the following equation

K+l
(60) 0= [Lf(x) Mdx) + §| | D £(x) v (dx) for f ¢S .
]

k=1 Sk
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3 The remainder of this section is devoted to proving Theorea 59.

(61) Proposition. Let t > 0 be given. Then there exists qp < =

5 such that

.

u (62) EX(Y(e)) < «, for x ¢S .

*i Proof. Define Z(s) = X(s)-X(0). Observe that (t) is independent
\

of X(0) and that § 1is a Brownian motion with drift y, covariance

matrix A and £(0) = 0. Observe that N(X,t) = N(&,t).

Corollary 4.95 implies that

5 14
i (63) E'(1¥(t)1) < B (N(Z,t)) « 4M( v b)),
§

n=]1

where N(Z,t) 1is defined by (4.49), and M is the number of stages.
F! Elementary properties of Brownian motion imply that EO(N(C,t)) =,

Since ¢ 1is independent of X(0) it follows that

i (64) ES(N(E,t)) = EC(NCE,E)) < = «

Lines (63) and (64) together imply (62).

(65) Corollary. Every k ¢ {1, 2, ..., Ktl} satisfies

(66) E*(Yk(t)) = for t >0 .
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The proof of (66) is a direct consequence of (62).

5 Let k ¢ {1, 2, ..., K+1'} and t > 0 be given., PFor £ ¢ C(S)

define A¢(f) as follows:

t
b (67) A (E) = E*[[ £(z(s)) d!k(o)] .
. 0
! (68) Proposition. The operator A, 1is bounded, linear and
- positive.
Ej Proof. The linearity and positivity of A, follows easily from the
r.

linearity and positivity of E*. If 1f1 <1 then

: t
E! 69 (D < x*[g 11 dY, (8)] < E* R () < @ Q.E.D.

(70) Corollary. The operator Ay has the following representa-

! tion:
:
- (71) M) = [ £(x) A(dx)
k" s
i
g -
i where A  1s a finite measure on the Borel sets of S.
;;
8 Proof. Observe that S is a compact Hausdorff space, and that )\

is a bounded linear functional on C(S). Therefore the Riesz

Representation Theorem (see Royden [12]) implies that there exists a
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post-t field. The penultimate equality follows from the stationarity

of the Z process and (4.9). Q.E.D.

(74) Proposition. Every t > 0 and f ¢ C(S) together satisfy
t
(75) A (£) = E*[g £(2(s)) dv,(s)] = ¢t é £(x) v (dx) .

Proof. Let f ¢ C(S) be given. The function g(t) = A (f) {is
linear and continuous, therefore elementary function theory implies

that

(76) M (£) = g(E) = tg(1) = A, () = t [ £(x) A (dx) .
S

Finally, vy equals 1A} by definition. Consequently (75) must

hold.

(77) Proposition. The measure vy 1is supported by Sy.

Proof. Observe that lines (4.5)-(4.7) imply that

(78) Is - Isk a.s. Ykﬁm) for every w e Q .
Therefore,
1 1
(79) z*(f) Isk“(‘” dy,(t) = E*({ 15(2(t)) dY (¢) ,
90
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finite signed measure it wvhich satisfies (71). Since )\ 1is a
positive operator, it follows that )\, must be a positive measure.

QoE-D.

In the following we will let the symbol )\ represent both the

E operator )\ and the measure ..

(72) Proposition. Every t,s > 0 and f e C(S) satisfy

(73) Megg) = A () +2.(£) .

Proof.

A ()

ths
z*[é £(2(u)) dY (w)]

t t+s
= B[/ £(Z(w)) a¥, (w)] + E*[[  £(2(v)) dY (w)]
0 t

t+s
A (D) + E*(EZ(t)[{ £(2(u)) dYk(u)])

8
A (E) + E* [ £(2(u)) d!k(u)]
0

A (E) + A (D) .

The antepenultimate equality follows from the Markov property of tha

-7
- R T

(Z,Y) process and the fact that f:ﬂ £(2(u)) dYk(u) belongs to the

-

%3
-




e

P ——
- B

YT,

wvhere each integral is defined pathwise as a Lebesgue-Stieltjes
integral. Line (79) now implies that v (8) = v (8)) = E*(Y (1)).

Q.E.D.

We will now prove Theorem 59. Take f ¢ S then Theorem 4l

implies that
t K t
df
(80) £(2(t))-£(2(0)) = | L£(Z(s))ds + — (2(8)) (s)
(fl kzl({ ox, e
K+l t
+ I | D £(2(s)) v, (s) .
k=1 0

Apply E* to (80), and use the stationarity of Z and Fubini's

Theorem to obtain

K+l t
(81) 0=t [LE(x) Mdx) + § E*[[ D _£(Z(s)) d¥,(s)] .
] k=l 0

Apply Propositions 74 and 77 to (81) to obtain

K+l
(82) 0=t [LE(x) Mdx) + ] t [ DE v (dx) .
$ k=1 S

k

Dividing through by t we now obtain (60).
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CHAPTER 6

A LIMIT THEOREM

In this chapter we consider a sequence of production networks
indexed by n =1, 2, ... . (Processes and quantities associated with
the nth system will be indicated by a superscript n.) Each system in
the sequence has the same number of work stations, denoted by K+l as
in Chapters 3 and 4, and has the same network structure, embodied in a
fixed successor mapping o as in Chapters 3 and 4. The sizes of the
storage buffers and the stochastic character of the various potential
output processes will be allowed to depead on n. Specifically, it
will be assumed that storage buffer k 1s of size by nl/2 in
the nth system, where b = (b;, ..., bg) 1is a fixed vector with

strictly positive components.

6.1 The Main Result

Let (¢,¢) be the reflection mapping on CK defined in terms
of o as in Chapter 4. Recall that we write ¢{x,b) and ¢(x,b)
when it is desirable to indicate explicitly the dependence of these
maps. on the capacity levels b = (bj, ..., bg).

Let (Q,B,P) be a probability space upoa which there are defined
a sequence of potential output processes {E(n), n> 1l}. Define
xt®, n>1} by

(1) xﬁ“) z ;in) - ;g?z) for k=1, ..., K.

Alternately, we can represent x(n) by
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(2) x(®) - FE(n) ,

where F 1is a K x K+l matrix defined by

1 for j =1
(3) £ = -1 for j = o(1) .
1]
0 othervise

Defiae (Z(n) (n)) for n> 1 as follows:

) 2™ () 2072 ox®, a2 4y (ar)
“ _
(5) ™) = 07 V2 4x®, 22 by (ne) .

Referring to Chapters 3 and 4, we see that Q(x(n) 1/2

K-dimensional buffer contents process for a productiomn network with

(n) 1/2

potential output process £ and capacity n " “b. That is,

¢(x(“) nllzb) is the contents process for our nth system, and
¢(x(“), n1/2 b) 1is the associated loot potential output process.
Then Z(n) and Y(n) are obtained from these, the processes of

fundamental interest, by a rescaling of time and space.

(n) _(n)

(6) Theorem. Let X', 2%, Y(n) be defined by (1), (4), (5)

respectively. Suppose that
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(7) n.l/z x‘“)(nc) -) X as nre,

where X 41is a Brownian motion with drift vector pu and covariance

matrix A as in Chapter 5. Then

(8) ™, ¥y o> (ox,b), ¢(X,b)) as noe.

Proof. Lemma 4.75 implies that

(9) 2V (e) = 0@V Doy, v ,
and
(10) Y™ () = o2 x(P(ary, b) .

Theorem 4.69 implies that the mapping x + (#(x), ¢(x)) 1is continuous
from cl to czxﬂ. Since n’l/ 2 x(") (ne) converges weakly to X,

the continuous mapping theorem implies that
an (a2 1V @e), v, ¢V 1 (@), v

=-> (#(X,b), «(X,b)) a8 n <+ e,

Lines (9), (10) and (11) jo‘ntl’ 1.’1’ (8)- Q.!.D.

6.2 Two Applications
As specific examples of our gemeral production network, we

discussed in Chapter 3 a random walk model and a random environment

9%
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model. Theorem 12 below shows how the hypothesis of our main result
(6) can be satisfied by a sequence of random walk models. The
interpretation of this result in terms of random walk models will be
clear from the notational parallels with Section 3.2.

(12) Theorem. Let (Q,B,P) be a probability space and suppose that
for each n > 1 there exists {C(n)(-); m > 1} a sequence of IID

random K+l vectors such that

(13) 1a o2 ™)) =y, where p ¢ R,
nre
(14) 1lim 'cov(c(")(l)) =D, where D is a K+l x K+l
n+e positive definite matrix,
and
(15) s | 1®2ap =0 forall e>0.

n+e “c(n)u)'?_nllz}

Define 5(“)(t) as follows

(el

(16) t ™) 2§ P + e-fe]) V(Les)) .
=]

Define X(n) by

(17) ‘(n) 2 u(n) .

Let X be a K~dimeunsional Brownian motion starting at 0 with drift
4 aod covarisnce matrix A = FDF'. Finally define (2%, Y'®) by

it P B G I FLLISPRLILIRS R Sty

equations (4) and (5). Then
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(18) 2, Y™y w3 (4(x,b), $(X,b)) s nse .
Proof. Lemma 20 (proved below) implies that

(19) e 012 XMy my x .
ns e

Line (19) and Theorea 6 jointly imply (18).

(20) lemma. Let (Q,B,P) be a probability space and suppose that for
each n 2> 1 there exists (n(n)(-); m > 1} a sequence of IID

random K~vectors such that

21) 1ta | m®mwi? ae =0, for all ¢> 0,
B e ™ alt’?
(22) 1ia Cov(n{™(1) = a
nee
and
(23) 1a ol’2 gn®1) -y
a4+ e

Define X(8) for a2l by

(3]
(26) ) 321 2™(3) + (e = [e]) n®(rer])

Then n-llz x(')(no) converges weakly to X as n + &, where X 1is

a Brownian motion with drift wvector u and covariance matrix A.




..................

Proof. Lemma 2.104 implies that it is sufficient to prove that
{r.r(x(")), n > 1)} converges weakly to r.r(x) for every T > 0 (see
(2.103) for the definition of r.r). The weak convergence of

{r.r(x(“’). niz 1} to r,(X) can be proved by imitating the proof of

.1.(
Theorem 4.1 of Parthasarathy [1l1]. Q.E.D.

Finally, we consider s sequence of random environment models
which satisfy the hypothesis of our limit theorem (6). For
simplicity, we suppose that the various systems in this sequence share
s common environment process 6, but the work rates ry(m) for
various lé‘t« of the environment = change ﬁth sequence h\do: ne
The interpretation of the following in terms of random environment
models will be clear from the notationsl parallels with Section 3.3.

(25) Theorem. Let (Q,B,P) be a probability space and suppose that
there is defined on (Q,B,P) an ergodic Markov chain @ = {6(t),

t > 0} with state space {1, 2, «¢o, M} and stationary distribution
OH. Por n) 1, let £(n) e a mapping from (1, 2, ..., M} to
lf'l. Suppose that 6 and r(n) jointly satisfy

(26) e(0) ~m ,

(27) !lrr“’(o(om at/2, u a8 n + e, where p ¢ 2,
and

(28) © lim rr“" eg, where gl { = .

av e
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Define '(n) and x"‘) respectively by

(29) (o) = 1™ ey

and
t

(30) x(“)(:) - [ v (o) ds s, for t>0 and n>1.
0

As before define (zX®, Y®?) by equations (4) and (5). Then
2, ¥) converges weakly to (¢(X,b), ¢(X,b)), where X 1s a

Brownian motion starting at O with drift . and covariance matrix

‘A defined by
(31) AE2 i‘; Cov(g(0(0)), g(o(s))) ds .

Before we can hﬁn the proof of Theorem 25, we need to consider
some p'.'c_nliury concepts.

lLet v = {v(t), t > 0} ba a stochastic process from @ to
2X. We define v to be - h-mixing if

(32) [p(my n B)) - B(E))K(E)| < KE)) Ke)

holds whenever E; lies in the o~field generated by (v(u);
0<u<s} and E; lies in the c-field gemerated by (v(u);
L | Z ﬂt).

(33) lemms. Suppose (v(%), n > 1} 1s a sequence of strictly
stationary stochastic processes on (Q,3,P) which joiatly satisfy




(34) vsn) is a measurable function a.s. P,

(35) Each process '(n) is h-mixing,
(36) (;) 0l/2e) at < =
(37 Ha | wv{P1ar =0 foral ¢>0,

n+e {lV((,n)lz_G nuz}

(38) 1 cov(vg") . vg") ) = o(s),

AN+

where p is & real valued matrix function, and

(39) ' lim nll 2 lvgn) ®ue k.
ne e '
Define x(") a random element of c‘ by
t
(40) 2™ () = | g

-1/2
Then n  Xu(ne) converges weakly to X, where X is a Brownian

wotion with drift . and covariance matrix A = (844) defined by
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(41) 8, " 2 (I) p“(l) ds .

The proof of Lemma 33 is almost identical to that of Theorem 20.1

of Billingsley [1]), and therefore we omit it. Q.E.D.

X We will now prove Theorem 25. Since 0 1is an ergodic Markov
chain, it is possible to show that there exists h(t) = art (where
- a>0 and r < 1) such that 0 4is h-mixing. COnuqu:ntly '(n)
must also be h-mixing. Clearly h satisfies condition (36) of
Lemma 33. Observe that sup, 17:{™1 < o and therefore w(®

A satisfies (27). Line (28) guarantees that

\ (42) 1n Cov(w®(0), w®)(s)) = Cov(g(8(0)), g(o(s))) .

. B+ e
Tinelly observe that w'™ 1s measurable almost surely (P) because
@ 1is measursble almost surely (P). Therefore {lr(" » 22 1} satie-
fies the hypotheses of Lemma 33 and thus

(43) a 2 V2™ =y x,
adve

where X 1is s Brownian motion starting at O with drift , and
covariance A. Theorem 6 now implies the desired result.

(44) Demsrk. Condition 26 may be omitted from Theorem 25 without
changing its conclusions.
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